
Embit Binary InterfaceEmbit Binary Interface
OverviewOverview

embit s.r.l.

 Document information

 Versions & Revisions

Revision Date Author Comments

1.0 01/01/2012 A. Sala Preliminary

1.1 14/12/2012 C. Biagi Minor Fixes

1.2 12/03/2013 F. Montorsi Minor Corrections; added hyperlinks

1.3 05/04/2013 C. Biagi Minor Fixes

1.4 19/04/2013 A. Sala Documented ATI command

1.5 16/05/2013 C. Biagi Modified bootloader section

1.6 31/07/2013 A. Sala Introduced the peripheral commands

1.7 26/02/2014 F. Montorsi Reorganized and added figures

1.8 05/03/2014 F. Montorsi Added check_packet() example func.

1.9 14/03/2014 C. Biagi Minor fix

2.0 05/05/2014 F. Montorsi Add list of EBI features

2.1 07/07/2015 C. Biagi Added EBI LoRa

 References

Ref Version Date Author Title

Embit Binary Interface Overview (rev 2.1) Page 2 of 10

 Index

1 Introduction..4
2 EBI Binary Commands Overview...6

2.1 Supported physical layers...6
2.2 Packet format..6
2.3 Packet types..8
2.4 Execution status byte...8
2.5 Difference between Embit UUID and EBI physical address..............................8
2.6 Available commands...9

3 Annex...10
3.1 Disclaimer..10
3.2 Trademarks..10

Embit Binary Interface Overview (rev 2.1) Page 3 of 10

 Introduction

1 Introduction

This document describes the Embit Binary Interface (EBI) protocol available on the wireless
OEM modules from Embit.

EBI can be described as a “user-friendly serial protocol” that allows to easily set-up a
wireless network employing simple “AT-like” commands (over a UART interface) using Embit
wireless modules:

A firmware application implementing the EBI protocol is available for all Embit modules, so
that any Embit wireless module can be employed as a “flexible modem” using simple AT-like
commands. The EBI protocol also accounts for the fact that different Embit wireless modules
support different over-the-air protocols (e.g., some of them support only Wireless M-Bus,
others support both IEEE 802.15.4 and ZigBee, etc):

Embit Binary Interface Overview (rev 2.1) Page 4 of 10

169 MHz
868 MHz
915 MHz

Host system

Interface setup
Module management

Energy saving management
Network management

Data exchange
Firmware update

Any Embit module

serial binary protocol
over UART / USB / Ethernet

EBI

IEEE 802.15.4

ZigBee

W-MBusW-MBus

Bluetooth
Low Energy

LoRa™
LoRaWAN™

Customer-selected
Embit module

EBI protocol
variant supported by
customer-selected

Embit module

Customer-selected
Embit module

EBI protocol
variant supported by
customer-selected

Embit module

Over the Air
Protocol

Customer host
system #1

Customer host
system #2

 Introduction

In particular, the EBI protocol supports several commands that abstract the features of over-
the-air protocols. For this reason, the majority of EBI commands are common to all Embit
modules; a portion of the EBI commands are available only on some specific Embit wireless
modules (see Section 2.4). Due to this, EBI documentation is divided in several documents:

• “EBI Overview”: this document; applies to all Embit modules;

• “EBI W-MBUS-specific Documentation” for all Embit modules supporting the W-MBus
over-the-air protocol;

• “EBI 802.15.4-specific Documentation” for all Embit modules supporting the IEEE
802.15.4 over-the-air protocol;

• “EBI ZigBee-specific Documentation” for all Embit modules supporting the ZigBee
over-the-air protocol.

• “EBI LoRa-specific Documentation” for all Embit modules supporting the LoRa™ /
LoRaWAN™ over-the-air protocol.

• “EBI Bootloader Guide”; applies to all Embit modules supporting a bootloader.

The binary commands that are defined in the EBI protocol, described in details in the
documents mentioned above, make easy to perform all the tasks required to setup a wireless
communication:

• network formation (depending on the over-the-air protocol employed this includes
association, security management, etc);

• management of the radio channel, RF output power, over-the-air data rate (for EBI-
WMBUS), etc;

• transmission and reception of variable-length binary packets;

• radio scans (useful to find the less-crowded radio channels that allow for higher signal-
to-noise ratios);

• device information retrieval (to identify the Embit radio module);

• enable/disable of power-saving modes (very useful for low-power wireless battery-
operated);

• firmware update over serial port.

The next chapter provides an overview of the packet format used for all EBI commands.

Embit Binary Interface Overview (rev 2.1) Page 5 of 10

 EBI Binary Commands Overview

2 EBI Binary Commands Overview

This chapter introduces the format of the binary commands and some general aspects of the
EBI protocol. A complete description and payload specification for each EBI command is
instead provided in the documents mentioned in Chapter 1:

• “EBI WMBus-specific Documentation”;

• “EBI 802.15.4-specific Documentation”;

• “EBI ZigBee-specific Documentation”;

• “EBI LoRa-specific Documentation”.

However please note that a careful reading of this chapter is strongly suggested as first step.

2.1 Supported physical layers

EBI commands are typically sent/received over a UART interface. The default parameters
for UART communications are 9600 baud/sec, 8 data bits, no parity, hardware flow
control disabled.

The UART messages formatted using EBI can also be transported over USB connections
(e.g., Embit evaluation boards feature a virtual COM emulation that allows to send EBI
commands via USB) or over Ethernet (employing UART-to-Ethernet gateways like e.g.,
Embit EMB-GATE920T).

2.2 Packet format

All EBI binary packets have the following common structure:

Field Packet length Message ID

Payload
(format specific

for each
Message ID)

Checksum

Length 2 Bytes 1 Byte Variable 1 Byte

The “Packet length” field specifies the number of bytes for the packet including all fields
(i.e., including the “packet length”, “message ID”, “payload” and “checksum”).

The “Message ID” field specifies the type of message and how the payload field has to be
processed. The most significant bit indicates, if set to 1, that the packet is a response to
the request identified by the lower 7 bits or is a notification (i.e., a packet that does not
require any response).

The “Payload” field is formatted differently for each message ID and contains details on
the actions to be performed. As mentioned above, please refer to EBI WMBus-specific
Documentation”, “EBI 802.15.4-specific Documentation”, “EBI ZigBee-specific
Documentation” or “EBI LoRa-specific Documentation” for such information.

Embit Binary Interface Overview (rev 2.1) Page 6 of 10

 EBI Binary Commands Overview

The “Checksum” field is the 8 bit sum of every byte in the packet (except for the
Checksum field itself!) with initial value 0x00.

An example of EBI packet is the following (using hexadecimal notation):

0x00 0x06 0x32 0x00 0x04 0x3C

This packet has a length of 6 bytes and represents a request with message ID = 0x32
(corresponding to the “network scan” command, see e.g., “EBI 802.15.4-specific
documentation”), with a payload of two bytes equal to 0x00, 0x04. Note that the
checksum byte 0x3C is equal to 0x06 + 0x32 + 0x04.

The data structure holding the EBI packet example above, in C language, could be the
following:

struct EBIPacketNetworkScan
{

uint8_t length_msb;
uint8_t length_lsb;
uint8_t messageId;
uint8_t payload[2];
uint8_t checksum;

};

A simple example function that checks if a “EBIPacketNetworkScan” has been received
correctly could be:

bool check_packet(EBIPacketNetworkScan* pkt)
{
 uint8_t computed_checksum = 0;
 /* note that an uint8_t is used to ensure
 that the sum is an 8-bit sum */
 computed_checksum += pkt->length_msb;
 computed_checksum += pkt->length_lsb;
 computed_checksum += pkt->messageId;
 computed_checksum += pkt->payload[0];
 computed_checksum += pkt->payload[1];

 return computed_checksum == pkt->checksum;
}

Note that all packet fields longer than one byte are transmitted in big endian order (i.e.,
the most significant byte is sent first over the UART).

Moreover, to each EBI command sent in the direction “host module” corresponds an EBI→
response in the opposite direction1; the host is required to wait for the EBI response
before sending the next EBI command: the wireless module implementing EBI can only

1 The Embit wireless module will NOT send an EBI response only in two cases: a) the EBI command sent is
not well-formatted (or the checksum is wrong), b) the EBI command is unsupported by that specific
module.

Embit Binary Interface Overview (rev 2.1) Page 7 of 10

 EBI Binary Commands Overview

process one command at a time. Every response is identified by the most significant bit
set to one; for example, the response to the message ID 0x32 has the code 0xB2.
To keep things simple and avoid buffer underrun problems the user must avoid sending
packets until the response for the previous packet is received.

2.3 Packet types

EBI commands can be classified in two different types of packets:

1. Command execute packets: these packets usually do not have a payload; used for
command execution have a response in which the first byte is typically an
“execution status byte” (see Section 2.4) indicating if the command has been
executed successfully;

2. Read/write parameter packets: these packets typically have a payload formatted
in two different ways depending if the parameter is to be read or write.
To read a parameter the packet is sent with an empty payload and the module will
respond with the current value of the parameter in the response payload.
Unsupported parameters will have a response with an empty payload.
To write a parameter the command is sent with the parameter value in the
payload and the module will respond with a single byte in the “execution status
byte” format. When writing unsupported parameters, the module will always
return “unsupported” in the response payload.

2.4 Execution status byte

Several responses to EBI commands (in particular responses to “Command execute
packets”) have a payload with a field called “execution status byte”. This status byte
must be interpreted as an acknowledge return value and has the following generic
meanings:

0x00 = Success
0x01 = Generic error
0x02 = Parameters not accepted
0x03 = Operation timeout
0x04 = No memory
0x05 = Unsupported
0x06 = Busy

2.5 Difference between Embit UUID and EBI
physical address

The EBI protocol differentiates between two concepts:

1. Embit UUID: this is a sequence of 8 bytes that identifies universally a specific
Embit module / device and that cannot be changed.

2. EBI physical address: this is a sequence of 8 bytes that identifies a specific Embit
module / device when it communicates over-the-air; such a sequence can be
changed at runtime (except for EMB-Z253x family of devices). Moreover, in EBI-

Embit Binary Interface Overview (rev 2.1) Page 8 of 10

 EBI Binary Commands Overview

802.15.4 and EBI-ZigBee variants, the “physical address” coincides with the IEEE
address.

2.6 Available commands

A list of all the binary commands of the EBI protocol is provided here, together with the
indication of which EBI variant (EBI-WMBus, EBI-802.15.4, EBI-ZigBee, EBI-LoRa)
implements it:

Supported by:

Message
ID

Command
Description

EBI
802.15.4

EBI
ZigBee

EBI
W-MBus

EBI
LoRa

0x01 Device Information V V V V
0x04 Device state V V V V
0x05 Reset V V V V
0x06 Firmware version V V V V
0x07 Restore to factory default settings V V V V
0x08 Save settings V V V V
0x09 Serial port configuration V V V V
0x10 Output power V V V V
0x11 Operating channel V V V V
0x12 Active channel mask V V
0x13 Energy save V V V V
0x14 Force sleep V V
0x15 Force data poll V V
0x1D Timer control
0x1E ADC control
0x1F GPIO control
0x20 Physical address V V V V
0x21 Network address V V V V
0x22 Network identifier V V V
0x23 Network role V V V V
0x24 Network automated settings V V V V
0x25 Network preferences V V V
0x26 Network security V V V
0x30 Network stop V V V V
0x31 Network start V V V V
0x32 Network scan V
0x38 Add endpoint V
0x39 Remove endpoint V
0x40 Associated addresses V V
0x41 Associating device V V
0x50 Send data V V V V
0x60 Received data V V V V
0x70 Enter bootloader V V V V
0x71 Set bootloader options (*) V V V V
0x78 Erase memory (*) V V V V
0x7A Write memory chunk (*) V V V V
0x7B Read memory chunk (*) V V V V
0x7F Commit firmware (*) V V V V

(*) Available only during bootloading phase.

Embit Binary Interface Overview (rev 2.1) Page 9 of 10

 Annex

3 Annex

3.1 Disclaimer

The information provided in this and other documents associated to the product might
contain technical inaccuracies as well as typing errors. Regulations might also vary in
time. Updates to these documents are performed periodically and the information
provided in these manuals might change without notice. The user is required to ensure
that the documentation is updated and the information contained is valid. Embit reserves
the right to change any of the technical/functional specifications as well as to discontinue
manufacture or support of any of its products without any written announcement.

3.2 Trademarks

Embit is a registered trademark owned by Embit s.r.l.

All other trademarks, registered trademarks and product names are the sole property of
their respective owners.

Embit Binary Interface Overview (rev 2.1) Page 10 of 10

	1 Introduction
	2 EBI Binary Commands Overview
	2.1 Supported physical layers
	2.2 Packet format
	2.3 Packet types
	2.4 Execution status byte
	2.5 Difference between Embit UUID and EBI physical address
	2.6 Available commands

	3 Annex
	3.1 Disclaimer
	3.2 Trademarks

